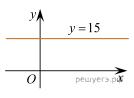
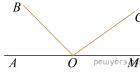

Вариант № 35

Централизованное тестирование по математике, 2013

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- **1.** Среди чисел $\frac{1}{3}$; 3^{-1} ; -3; -0, 3; $\sqrt{3}$ выберите число, противоположное числу 3.
 - 1) $\frac{1}{3}$ 2) 3^{-1} 3) -3 4) -0.3 5) $\sqrt{3}$
- **2.** Пусть O и O_1 центры оснований цилиндра, изображенного на рисунке. Тогда образующей цилиндра является отрезок:


5) LM

- 3) 00_1 1) *LN* 2) *LO* 4) *LP*
- 3. Среди $A(0;-15), O(0;0), N(-8;15), C(-\sqrt{15};\sqrt{15}), B(15;0)$ выберите ту, которая принадлежит графику функции, изображённому на рисунке:

3) N 1) A 4) C 5) B

- **4.** Найдите значение выражения $\left(6\frac{5}{6} 6\frac{13}{18}\right) \cdot 4, 5 0, 7.$
 - 1) -0.2 2) -1.2 3) 3.4 4) 1.2 5) 0.2
- 5. Одно число меньше другого на 48, что составляет 12% большего числа. Найдите меньшее число.
 - 1) 450 2) 448 3) 390 4) 352 5) 800
- **6.** На рисунке изображены развернутый угол *AOM* и лучи OB и OC. Известно, что $\angle AOC = 127^{\circ}$, $\angle BOM =$ 153°. Найдите величину угла ВОС.

- 1) 37°
 - 3) 63° 5) 100°
- 7. Образующая конуса равна 16 и наклонена к плоскости основания под углом 60°. Найдите плошадь боковой поверхности конуса.
 - 1) $128\sqrt{3}\pi$ 2) 64π 3) 128π 4) $160\sqrt{3}\pi$

- 5) 256π
- **8.** Расположите числа $6,11;\ \frac{44}{7};\ 6,(1)$ в порядке возрастания.
 - 1) $\frac{44}{7}$; 6,11; 6,(1) 2) 6,11; 6,(1); $\frac{44}{7}$ 3) 6,11; $\frac{44}{7}$; 6,(1) 4) 6,(1); 6,11; $\frac{44}{7}$ 5) 6,(1); $\frac{44}{7}$; 6,11
- 9. Одна из сторон прямоугольника на 3 см длиннее другой, а его площадь равна 88 см². Уравнение, одним из корней которого является длина меньшей стороны прямоугольника, имеет вид:
 - 1) $x^2 3x 88 = 0$ 2) $x^2 + 88x 3 = 0$ 3) $x^2 88x + 3 = 0$ 4) $x^2 + 3x + 88 = 0$ 5) $x^2 + 3x - 88 = 0$
 - **10.** Точки A(-4; 1) и B(3; 3) вершины квадрата ABCD. Периметр квадрата равен:
 - 1) $4\sqrt{53}$ 2) $4\sqrt{17}$ 3) 22 4) $2\sqrt{53}$ 5) 27
- 11. Упростите выражение $\frac{11\sqrt{11}+3\sqrt{3}}{\sqrt{11}+\sqrt{3}}-\sqrt{33}+\frac{16\sqrt{3}}{\sqrt{11}-\sqrt{3}}$

2/5

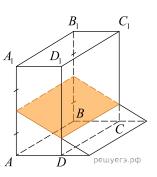
1) 20 2)
$$\frac{3}{\sqrt{11}-\sqrt{3}}$$
 3) $\frac{1}{\sqrt{11}+\sqrt{3}}$ 4) 14 5) $\sqrt{33}$

12. Решением неравенства

$$\frac{28}{5} - \frac{4x^2 + 5x}{4} < \frac{3 - 5x^2}{5}$$

является промежуток:

1)
$$\left(-\infty; \frac{1}{4}\right)$$
 2) $(4; +\infty)$ 3) $(-\infty; 4)$ 4) $\left(\frac{1}{4}; +\infty\right)$ 5) $(-\infty; -4)$


- 13. Найдите длину средней линии прямоугольной трапеции с острым углом 60°, у которой большая боковая сторона и большее основание равны 6.
 - 3) 4,5 4) $3\sqrt{3}$ 5) $6\sqrt{3}$ 1) 9 2) 3
 - 14. Упростите выражение

$$\left(2 + \frac{4b^2 + c^2 - a^2}{2bc}\right) : (a + 2b + c) \cdot 2bc.$$

- 1) 2b-c-a 2) 2b+c+a 3) 2b+c-a 4) $4b^2c^2$ 5) 2
- **15.** Найдите сумму целых решений неравенства $3(x-2) > (x-2)^2$.

$$3)-7$$

16. $ABCDA_1B_1C_1D_1$ — прямоугольный параллелепипед такой, что AB = 16, AD = 3. Через середины ребер AA_1 и BB_1 проведена плоскость (см.рис.), составляющая угол 60° с плоскостью основания *ABCD*. Найдите пло- A. щадь сечения параллелепипеда этой плоскостью.

1) $48\sqrt{2}$ 4) $48\sqrt{3}$ 3) 48 5) 24 17. Сумма наибольшего и наименьшего значений функции

$$y = (5\sin 3x + 5\cos 3x)^2$$

равна:

3) 25

4) 50 5) 13

18. Корень уравнения

$$\log_{1,3} \frac{6-5x}{2x-7} + \log_{1,3} \left((6-5x)(2x-7) \right) = 0$$

(или сумма корней, если их несколько) принадлежит промежутку:

$$|0;1\rangle$$
 5) (1)

- 19. Автомобиль проехал некоторое расстояние, израсходовав 15 л топлива. Расход топлива при этом составил 6 л на 100 км пробега. Затем автомобиль существенно увеличил скорость, в результате чего расход топлива вырос до 8 л на 100 км. Сколько литров топлива понадобится автомобилю, чтобы проехать такое же расстояние?
- **20.** Решите уравнение $\sqrt{x-6} \sqrt{(x-6)(x+1)} = 0$. В ответ запишите сумму его корней (корень, если он один).
- 21. Основание остроугольного равнобедренного треугольника равно 8, а синус противоположного основанию угла равен 0,6. Найдите площадь треугольника.
 - **22.** Пусть (x; y) целочисленное решение системы уравнений

$$\begin{cases} 3x - y = -9, \\ 4x^2 + 4xy + y^2 = 1. \end{cases}$$

Найдите сумму x + v.

- **23.** Найдите наибольшее целое решение неравенства $3^{3x-41} \cdot 10^{x-9} > 30^{2x-25}$.
- **24.** Найдите количество корней уравнения $11\sin 2x + 3\cos 4x = 6$ на промежутке $\left[-\frac{\pi}{2};2\pi\right]$.
- 25. Геометрическая прогрессия со знаменателем 7 содержит 10 членов. Сумма всех членом прогрессии равна 24. Найдите сумму всех членов прогрессии с четными номера-МИ.

26. Найдите сумму корней уравнения

$$|(x+3)(x-2)| \cdot (|x+6|+|x-4|+|x+1|) = 11(x+3) \times (2-x).$$

- **27.** Из города A в город B, расстояние между которыми 90 км, одновременно выезжают два автомобиля. Скорость первого автомобиля на 20 км/ч больше скорости второго, но он делает в пути остановку на 45 мин. Найдите наибольшее значение скорости (в км/ч) первого автомобиля, при движении с которой он прибудет в B не позже второго.
- **28.** Из точки A проведены к окружности радиусом 4 касательная AB (B точка касания) и секущая, проходящая через центр окружности и пересекающая ее в точках D и C (AD < AC). Найдите площадь S треугольника ABC, если длина отрезка AC в 3 раза больше длины отрезка касательной. В ответ запишите значение выражения SS.
- **29.** Если $\cos(\alpha+12^\circ)=\frac{\sqrt{5}}{5},\ 0<\alpha+12^\circ<90^\circ,$ то значение выражения $9\sqrt{10}\cos(\alpha+57^\circ)$ равно ...
 - 30. Решите уравнение

$$\frac{28x^2}{x^4 + 49} = x^2 + 2\sqrt{7}x + 9.$$

В ответ запишите значение выражения $x \cdot |x|$, где x — корень уравнения.